Journal of Computational Physi&é§7,419-440 (2000) ®
]
doi:10.1006/jcph.1999.6338, available online at http://www.idealibrary.col DE &l.

Tensorial Basis Spline Collocation Method
for Poisson’s Equation

Laurent Plagn& and Jean-Yves Berthou

*Département de Recherche Fondamentale sur ladvaiCondenise, CEA-Grenoble, 17 Rue des Martyrs,
38054 Grenoble Cedex 9, France; afiDF-DER/IMA/MMN/ISA, 1, Av. du General de Gaulle,
92141 Clamart Cedex, France

E-mail: plagne@ilt.fhg.de

Received June 29, 1998; revised April 15, 1999

This paper aims to describe the tensorial basis spline collocation method applied
to Poisson’s equation. In the case of a localized 3D charge distribution in vacuum,
this direct method based on a tensorial decomposition of the differential operator
is shown to be competitive with both iterative BSCM and FFT-based methods. We
emphasize thé(h*) and O(h®) convergence of TBSCM for cubic and quintic
splines, respectively. We describe the implementation of this method on a distributed
memory parallel machine. Performance measurements on a Cray T3E are reported.
Our code exhibits high performance and good scalability: As an example, a 27 Gflops
performance is obtained when solving Poisson’s equation onZar@BBuniform 3D
Cartesian mesh by using 128 T3E-750 processors. This represents 215 Mflops per
Processors. © 2000 Academic Press

Key WordsPoisson solver; Vlasov equation; orthogonal spline collocation; tensor-
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1. INTRODUCTION

Elliptic equations occur in a large class of physical problems and the computational c
of their solution is usually a major factor in computer simulation code design. Dependir
on the physical problem to be solved, one must choose very carefully a numerical mett
from among the large number of methods available for this class of differential equatior
In practice, the main issue for 3D problems is to achieve the shortest time of calculati
for a given accuracy. This calculation time, considered as the main feature of the numeri
method, is a function of three parameters: the grid size, the algorithmic cost, and 1
efficiency of the implemented code. The grid size (the number of grid cells) needed to ree
a given accuracy depends on the order of the method (e.g., the order of a finite differe
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420 PLAGNE AND BERTHOU

scheme) and on the suitability of the grid to the physical problem. The algorithmic cos
which is the number of operations required to perform the calculation as a function of tl
grid size, is obviously another essential feature. The efficiency of the implemented co
depends mainly on the optimization level attainable with the compiler used on sequent
computers, together with the suitability of the method for a parallel implementation c
parallel computers. Obviously, in order to judge the merit of a proposed method, practic
parameters for a physical problem (e.g., the required accuracy) must be clearly defin
This paper aims to describe a numerical method as practically as possible, that is to
keeping in mind the overriding importance of the calculation time.

The method presented here has been designed to solve Poisson’s equation for a loca
3D charge distribution in vacuum in the context of cluster physics [7, 14]. In this cas
one can obtain the boundary conditions using a multipolar expansion, which requires,
high accuracies, the use of very large grids compared to the spatial extent of the cha
density. Non-uniform grids are highly desirable, since they allow an accurate meshing of t
charged region and at the same time, a large spatial extent of the grid using a relatively |
number of grid cells. The non-uniform Cartesian grids which are used make this method
intermediate case between FFT-based methods which are very fast but use uniform g
not well suited to a multipolar expansion, and finite element methods, which are slow
but very efficient for handling problems with a complex geometrical structure. Anothe
essential feature of the method is the use of a cubic or quintic spline basis. The princi|
is to look for an approximate solution of the differential equation as an expansion on
spline basis. Solving the original differential equation is then equivalent to solving a line:
systemAX = B where the matrix A is huge and sparse in the 3D case. The basis splil
collocation method is described in detail in the paper [18]. The authors deal not only wi
elliptic equations but also with eigenvalue problems (e.g., the Schroedinger equation)
indicate an iterative method to solve the resulting linear systems. However, a direct (.
non-iterative) algorithm can be used in the particular case of elliptic equations on Cartes
grids by maintaining a tensorial structure throughout the calculations.

Part 2 describes the derivation of the method. In order to introduce all the spline-relat
notations, the case of one-dimensional differential equations is discussed in Subsection
The 3D case is treated in Subsection 2.2 where all tensorial notations are introduced.
computational cos®(N%) of the method is calculated in Subsection 2.3, allowing one tc
compare this direct method with iterative methods. Subsection 2.4 gives a detailed treatrr
of boundary conditions. In Subsection 2.5 we generalize the method to the Helmho
equation and to the use of quintic splines. Théeh*) andO(h®) orders of TBSCM for the
cubic and quintic cases respectively are emphasized in Subsection 2.6. Subsection 2.7 ¢
a comparison between TBSCM and FFT-based meti@d¢® In(N)).

Section 3 describes the parallel implementation of TBSCM on Cray distributed memo
machines. Subsection 3.1 introduces the different target machines. The mixed HPF-N\
parallel implementation of the computational kernel is detailed in Subsection 3.2. Perft
mances and scaling of the whole code are emphasized in Subsection 3.3.

2. TENSORIAL BASIS SPLINE COLLOCATION METHOD

2.1. Spline Basis and the One-Dimensional Case

2.1.1. Cubic splines.Because several definitions can be found for a cubic spline [3]
we first give the definition to be used in this paper. Let us first introduce a grid con
posed ofNg + 1 points{Xa}/Xo < X1 < - -+ <Xa < --- < Xn, ON Which are definedi®y + 2
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third-order piecewise polynomial functions (cubic spling§)(x)}/i =0...2Ng + 1. One
can define uniquely the two kinds of splines, namely odd and even splines, by giving t
following conditions at the grid points:

SZa(Xa) = %a+l(xa) = 1
%a(xa) = Sa11(Xa) =0
Sa(X) = Sar1(X) =0 VX € [X0, Xa—1] U [Xat1, Xn, |-

These conditions lead to the explicit formulas

B(22) - 2(222)° vxe brasnd

Xa — Xa-1 Xa — Xa-1

Sa() = 3(2ea=X)? (%=X ) vy ¢ Xy, Xas1]

Xat+1 — Xa Xa+1 — Xa
0 VX € [Xg, Xa_1] U [Xa+1, XNg]
o o 1)
O =% | (22) = G2)°] vxeDea ]
2a+1(%) = § (x4 — Xa) {(::11__)2)2 — (2:11:2)3} VX € [Xa, Xa+1]
0 VX € [Xo, Xa—1] U [Xa+1, XNg] .

Figure 1 shows odd and even cubic splines.
A function f expanded on this basis is differentiable with a continuous first derivativ
on the grid,

2Ng+1

fo =3 aSX.

i=0
Because there is only one non-zero spline and one non-zero differentiated spline at a:
pointx,, f(X3) and f’(xy) are given simply by

f(Xa) = CZaSZa(Xa) = C2a

f'(Xa) = 02a+1%a+1(xa) = Coa+1-

of

FIG. 1. Odd and even cubic splines.
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2.1.2. One-dimensional equationln order to describe the basis spline collocation
method, we shall treat a simple differential equation in one dimension. Let us consid
the differential equation

3%V
] 2)

Boundary condition®/(xo) = Vo andV (xy,) = V, are known. We are looking for an ap-
proximate solutiorp (x) >~ V (x) as an expansion on the spline basis,

2Ng+1
)= Y GSX. ©)

i=0

Hence, the problem is now to determine b coefficients. Obviously, two coefficients are
already knowncy = Vp andcan, = V. In order to determine theNg; remaining unknown
coefficients{c;} one has to definely equations.

2.1.3. Collocation points. Let us now introduce the so-calledNg collocation points
{X,} chosen to be the Gauss points on each grid stgpf. 1],

(Xa+1 + Xa) . (Xa+1 - Xa)

X2a+1 =

2 2V3
(4)
Konio = (Xat1 + Xa) n (Xat1 — Xa)
2 2.3

For convenience, we also defiRg= Xq andxon,+1 = Xn,. We thus obtain, by applying the
differential equation (2) at each collocation point, thé,Zquation,

2Ng+1

DS =p) VYo e[l 2Ng]. (5)
i=0

We will continue to use Greek indexes for collocation points (i.e., real space) while Rom:
indexes will be used for splines.
The derivatives§ andS’ are determined analytically from the polynomial expression (1).

2.1.4. Matrix notations. The discretization of the problem has been achieved by the
use of a cubic spline basis. It is now useful to introduce a matrix notation. We define tv
matricesSandS’ [2Ng + 2)?] and vectorsp andC [2Ng + 2] as

Si = S(Xa)

Va,i € [0, 2Ng + 1] % = 506
¢a:¢i(xa)
C =gq.

It is now possible to rewrite these equations in a condensed form,

2Ng+1
()= Y GS() Vo el0,2Ng+ 1]
i=0
& ¢ =SC (6)
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We introduce the operatdd = S’S™%, which satisfiesDg =S’StSC=S’C. We can
rewrite Eq. (5) in the form

2Ng+1 2Ng+1

[D¢le= > SiCi= > ¢S (%) Veel0 2Ng+1]
i=0

i=0
= p(%)  Vae[L2Ng). ™

Boundary conditions must be separated from the unknown variapblg®., in the rhs).
This is achieved by splitting this sum in two terms,

2Ng+1 2Ng
[D¢le = Y Dawtw = Y Dawtbwr + Y, Dunda. ®)
o'=0 a'=1 A:O;2Ng+l

By combining Egs. (7) and (8), the discretized differential equation can be rewritten

2Ng
ZDaa’¢a’ = p()Ta) - Z DaAd)A Va € [17 2Ng] (9)
a'=1 A=0;2Ng+1

In order to rewrite this equation in a matrix form some new matrices and vectors must
defined. We define the sub-matrices and sub-vectors of dimensidNg)f] and [2Ng],
respectively,

6010/ = Dao/
Vaa 05/ € [1’ ZNQ] ¢?a - ¢(x
Pa = Pu — (Daodo + Daang+1P2ng+1)-

The final expression of the original differential equation is therefore
D¢ = 5. (10)

At this point, one can easily solve Eq. (10) by performing the inversion of the square mati
D. Then, it is straightforward to gei = D~15. The ¢ vector contains the approximate
solution at all collocation points. It should be noticed that several methods (e.qg., fini
difference method) stop at this point. In the BSCM case, the interpolation needed to |
the approximate solution between collocation points is indeed natural. The use of spl
basis in Eq. (3) transforms a continuous problem into a discrete one and can obviously
used to recover a continnous approximate solution. By buildifrgm ¢ and the boundary
conditions, and by inverting Eqg. (6), one can obt@ir=- S1¢ and use Eq. (3) to get a
continuous approximate solution known everywhere inside the grid.

2.2. Three-Dimensional Poisson’s Equation

Subsections 2.2.1 and 2.2.2 show that the procedure for the three-dimensional cas
a straightforward generalization of the one-dimensional case. One can easily obtain
equation similar to Eq. (10) that can be solved by using an iterative scheme, as propo
in [18]. Subsection 2.2.3 proposes a direct method based on tensorial decomposition wi
differs from the iterative BSCM treatment.
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Let us first consider Poisson’s equation using Hartree wiits). is the electrostatic pote-
ntial due top(r), a known localized charge density,

V2V (X, Y, 2) = —4np(X, Y, 2). (11)

For each dimension, a grid (which can be different in size and location) must be ch
sen: {Xa}, {¥}, {zc}. To simplify the notations, the grid sizes are chosen to be equa
Nx=Ny= Nz= Ng. From these three grids, threeNg+ 2] collocation grids are de-
fined (Eq. (4)):{X.}. {Ys}, {z,}. Here again, the aim is to find an approximate solution to
Eq. (11) defined on a 3D cubic spline basis,

2Ng+1

P Y. D =D GikSxi () S (V) Szk(@). (12)

ijk=0

The discrete problem is now to determine (2&q +2)% unknown variableg;jx by ap-
plying the differential equation at th@Ng)3 inner collocation points and by using the
(2Ng + 2)3 — (2Ng)3 boundary conditions. We now assume that the values of the potenti
at the surface of the 3D rectangular grid are known,

Dapy foraorgory =00r2Ng+ 1. (13)

We define, as we have done for the 1D case, the matri2ég [ 22 Sk, Sy, S, Sk S,
S}, Dx, Dy, Dz and the sub-matrice$Z[Ng)2] Dy, Dv, Dz. The sub-vectop includes
once again the boundary conditions,

Papy = 4mp(Xa, Yp, Z,) — Z Dxaadag, — Z DvgBdaBy
A=0;2Ng+1 B=0;2Ng+1

- Z Dz,coasc.

C=0;2Ng+1
Inorderto be able to write down the equation corresponding to Eq. (10), we have to introdu
new notations.

2.2.1. Tensorial notations.Let us consider three square matricéN, + 2)?] relative
to each dimensionAx, Ay, Az. We introduce a tensorial operatagy z with [(2Ng + 2)°]
elements as the tensorial product of the thheeperatorsAxyz= Ax ® Ay ® Az. Each
element of this three-dimensional operator is defined by

[Axy Zapy.ijk = Axai Avgj Azyk.
Two three-dimensional operators can be combined by a tensor—tensor product,

Axyz = BxyzCxyz
& [Axy zlapy.ijk = Z[BXYZ]aﬂy,abc[CXYZ]abcijk~

abc
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The tensor-vector product between a three-dimensional opekator and a three-dimen-
sional vectol xy z with [(2Ng + 2)%] elements is also defined,

Vxyz = AxyzZUxyz
& [VxvZapy = D _[Axy Zapy.abdUxy Zabe

abc

Introdcing the three-dimensional identity operatgk z=1x ® Iy ® 1z, one can easily
verify the properties

(Ax®By®Cx)t=Al'®B;'®C;!
(14)

(AxyzBxvy2) ™t = Bxy A%y 2

2.2.2. Discrete Poisson’s equation on atensorial formBy using these newly introduced
definitions, one can now write Eq. (12) applied at the collocation points,

¢XYZ = [S)( ® S{ ® SZ]nyz. (15)

It is now possible to write down in a condensed form Poisson’s equation corresponding
Eq. (10) in the one-dimensional case. We first build the Cartesian Laplacian opefatar

Vivz=[Dx®iv®iz+ix®Dby®iz+x®iy® Dzl (16)
Poisson’s equation can finally be written
Vay20xvz = Pxyz. (17)

At this point, the one-dimensional problem was over and the solgtionuld be obtained
by ¢ = D~14. Similarly, one could easily transform Eq. (17) into a standard matrix equatio
by introducing super-indexes,

| =i +2j(Ng+ 1)+ 4k(Ng + 1)?

[ =a+28(Ng+ 1) +4y(Ng + 1%
Here, | corresponds uniquely to a sét j, k) andT to a set &, 8, ). Using this one-

to-one mapping, one can transform the tensorial opel%ic}rz, and the tensorial vectors
dxyz, Pxyz andCyy z, into standard matrix and vectors,

[V]rr = [%iYZ] By By’
[‘5]1“ = [‘f;XYZ]aﬂy
[Alr = [Pxy Zlapy
[Cli = [Cxvyzijk-

One can rewrite Eq. (17) as a matrix equation equivalent to the 1D Eq. (10),

V2 = p. (18)
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The dimension of the matrix2 is (2Ng)®. For a typical number of collocation points,
2Ng = 100 this leads to 8 matrix elements. This matrix is fortunately extremely sparse.
From the definition of the cubic splines one can see that there are only 4 non-zero splil
at a given collocation point in one dimension. In the 3D case this leads to 64 non-ze
elements per matrix row and to Q4\lg)3 non-zero elements for the matrix. However,
one cannot perform the inversion of this matrix because the inverse of a sparse matrix is
sparse and contains #hon-zero elements, which is impossible to store. The usual way t
solve this kind of problem is to calculageusing an iterative method. Basically, one tries a
guessed solutiog', then performs the produpt = V2¢' and uses the differenge—"3' to
calclate an improved guegst®. This scheme is repeated iteratively until a given accuracy
is reached. It should be noticed that the initial gug'smust be chosen “good enough” to
ensure the convergence of the iterative scheme.

At each step, the matrix-vector produét' requires 128N,)? operations. However,
because of the tensorial structure?., ,, a direct (i.e., non-iterative) method to solve
Eq. (17) is available.

2.2.3. Tensorial decompositionThis direct method relies on the fact that the inverse
tensorial operatok2, , can be calculated as a function of small 1D matrices and a 3L
operator made as simple as possible (diagonal). The first step is to diag@halibs,, Dz,

Dy = MxTxMy}; Dy = MylIly Mg Dz = Mzf1zM3%, (19)
whereflly, Iy, [T are diagonal matrices,
[ﬁX]aa’ = aaa’lxa

[Tylps = Spplys (20)

[ﬁZ]yV’ = 5VV'IZV'

Since the operatorl§x, Dy, D7 are not symmetrical, this diagonalization can lead to com-
plex matricesM and I1. In the case of cubic splines on uniform Cartesian grids, thes
matrices have been proved to be real [2]. Since the complex case should be a strail
forward generalization, we assume these matrices to be real in the following. Using tl
transformation, one can rewrite Eq. (16) as

6§<Yz = Mxﬁxmilg) velz+ix® MYﬁYM\?l(X) iz+Ix®iv® Mzﬁzmil-
Using an obvious property of the identity operatior,= M x I x My, we obtain
Vivz= (Mx® My ® |\7|z)|5xvz(|\7|}1® Myt ® |\7|21)
with
Pxyvz=Mx®Iy@Iz+1x@My®@iz+Ix®ly®Il;.

The main point is thaPyy 7 is diagnal for all dimensions allowing one to calculate its
inverse,

(B ] _ OaarBppdyy
XY Zaprafy ™ Ly +lyg + 1z
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Using the properties (14) one can finally write the inverse opel@ﬁrz,
V27 = (Mx ® My ® M2)PyY (Mt @ Myt @ M3Y). (21)
This direct approach to performing the inversion of a tensorial operator was derived for t
first time in the context of the finite difference schemes in [13].
¢xy zis obtained by performing the tensor-vector product,

Fxvz = Vayzpxvz. (22)
Then, one can rebuildlxy z and obtainrCxy z using Eq. (15),
Cxvz= (S'® §'® S, )dxvz (23)

Using Eg. (12), the approximate solution and its two first derivatives are known everywhe
inside the mesh.

2.3. Algorithmic Cost; Comparison with Iterative Methods

Most of the mathematical papers dealing with elliptic partial differential equations give
detailed account of the number of floating-point operations required for a given algorithi
In many of them, a 2D square mesh is used to describe a method. Practically, in the
case, calculations on 1D matrices (el@x = M x I1x M) have a computational cost very
low compared to the cost of the 3D calculations involved in the method. The gap betwe
the cost of 1D and 3D calculations is even bigger when Poisson’s equation is to be sol
many times on the same grid because all the 1D matrl%@sﬂx, My, .. .) are built once,
whereas 3D calculations like (22) have to be done each time. By far the most expensive s
of the method are the two tensor-vector products in (22). As an example, the tensor-ve
product (23) can be split in three operations (for convenience we defia@Ng + 2 to be
the number of collocation points),

[Cxv ik = [Sil}ia[sﬁ?l} i [Sl]ky[cbxvz]aﬁy

=[S, ( NZl [S] ky[qsxvz]aﬂy).

y=0

We calculate successively the two intermediate ved@grs, andCy , and obtain finally
Cxvz

N-1

[Cy Zapk = Z [%l] ky[¢XYZ]a/3y

[Chy ik = Y [ 5[Ckv uk
B=0
N-1

[Cxyzik = Z [gl]ia[civz]aik

a=0

One can easily count from these three equations that the tensor-vector produciN‘osts
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real multiplications and 84 real additions. Equation (22) requires 2 tensor-vector products
The total algorithmic cost of the method is aboutNFfXloating point operations (18* if

the interpolation (23) is done). The parallel implementation and optimization of this tensc
vector product is detailed in Section 3.

Each step of the corresponding iterative method costiN$Z8ee Subsection 2.2). As-
suming 100 to be a typical value fd\, it is straightforward to see that an iterative method
should not exceed 10 iterations to remain competitive with TBSCM. For this size of line:
system, 10 iterations are very few, even if a suitable preconditioner is used, and one wo
usually expect at least 50 iterations to reach an acceptable solution. For aNjitha
maximum number of iterations leading to a competitive iterative scheme is

12N*4 12
128N3 ~ 128
In addition, the use of a direct method allows us to avoid handling possible converger
problems of iterative methods.

2.4. B-Spline Extras; Boundary Conditions

2.4.1. Differentiation and integration procedurelt has been emphasized in the descrip-
tion of the 1D case that the natural interpolation (23) is not necessary when the electrost
potential is only required at the collocation points. However, in many physical application
one has to evaluate the potential and the electric fiedderywhere inside the mesh. This
is obviously the case when trajectories of charged particles are needed. In order to eval
this field one has to differentiate the potential given by Eq. (12). FoXtleemponent of
this field this leads to

9 N
a—f(x, Y.2) =3 Gk Si(X)Srj(Y)Szk(2).

ijk=0
There are only 64 non-zero terms in this sum. To specify in which mesh cell the poi
(X, Y, 2) is, we definea, b, andc as

X € [Xa, Xat1l: Y € [Yb, Yoral; z e[z, Zc41].

Then the 64-term sum can be written
2a+3 2b+3 2c+3

—(x Y2 =Y > > cikSa)Sj(y)Szk(2).

i=2a j=2bk=2c

From the spline’s polynomial definitions (Eg. (1)), the analytical expressions for the spline
derivative can easily be calculated without further approximations.

The polynomial nature of splines is also used to perform accurate integrations. As
example, consider the spatial integration of the potemtiakide the mesh,

[ [ oo

///Zc.,ksux)& (¥)Sz(@) dx dy dz

ijk=0

N
= Z Cijk wi wj Wk

ijk=0
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with

XNg YNg ZNg

o= [ s o= [ smdy w= [ s@dz @
Xo Yo ko

Once again thevs are determined analytically and involve no further approximations

Furthermore, theses depend only on the mesh and thus have to be calculated only onc

The calculations of the electrostatic boundary conditions (Eq. (13)) use this integrati

procedure.

2.4.2. Boundary conditions.This paper will describe only Dirichlet boundary condi-
tons, though other kind of boundary conditions can be handled by BSCM (see [18]). In't
case of a localized 3D charge distribution in vacuum, one can obtain an approximation
the potential on the boundaries of the megkg() using a multipolar expansion (see, for
example, [12]). Up to now, we have used for our physical application an expansion trunca
at the quadrupolar term. Depending on specific needs of users, this expansion may inc
higher-order multipole terms. In any case, the procedure will be a straightforward exte
sion of the one described here. Assuming that the boundaries of the mesh are far enc
from the charge distribution, the following formula leads to a good approximation for th
potential,

Fe

3
p-r Xi X;j Qij 4
S+ +”§7r5 +0(1/r", (25)

¢(r) =

with the definitions
Q= /p(r)d3r:total charge
p= /p(r)r d°r: dipole moment (26)
Qij = /p(r)(Sxi X; — r28;) d%: quadrupolar terms.

Note thatin Egs. (25) and (26}, mean, y, zfori =1, 2, 3, respectively. These quantities
are obtained by using a procedure similar to (24) once the interpolatiproofthe spline
basis has been done,

N
p(X,Y,2) = Z bijk Sxi (X) Syj(Y) Szk(2).

i.j.k=0

Then one has to calculate all the multipolar terms such as

N
Q= Zwiijkbijk

ijk

N
px = waijkbijk
ik
N
Qxx = Z(Za){/w,—wz + wiwfwx + v wjo)bik
ik
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with the definitions

;i :/NS(x)dx; w{:/NxS(x)dx; w{’:/NXZS(x)dx. (27)

Xo Xo
Once again, expression for these integrals can be found analytically. In practice, it is use
to calculate first the total charg@ and the dipole moment and then to evaluate Eq. (25)

in the frame of the center of charge=p/Q (for Q # 0). In this new frame, the dipolar
term is obviously zero and ten Eq. (25) can be rewritten

<m——+23”q' (28)

ij=1

Note that the quadrupolar term depends on the used fr@ne# Qij. However,Qj; is a
simple function ofQ, p, andQ;;.

2.5. Generalizations

2.5.1. Helmholtz equation.TBSCM is not restricted to Poisson’s equation. In fact, if
a differential equation involves a differential operator that can be written as a tensor
product of one-dimensional operators invertible using a procedure similar to (21), then t
method can be applied. Helmholtz's equation in Cartesian coordinates is the most sim
generalization that can be made,

[VZ = X2V (r) = p(r).
The corresponding three-dimensional operaﬁs@r(z is
Axvz=Viy;—2ix®@Ty® ;.
One can easily verify that
Al 2= (Nix @ My © M) Q) ,(Nx! ® Nyt @ Nizh),
with
Qxvz=Mx®Iy@Iz+x@My®Iz+1x®@iy@l; -22Ix®ly®Iiz,

and

[(j—l ] _ Saadpp Syy!
Hapra By = |, +1yg + 15 — A

Reference [13] describes the tensorial decompositions of other kinds of differential eq
tions.
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2.5.2. Quintic splines. Another generalization of TBSCM is the use of higher order
polynomial functions such as quintic splines. The main difference in this case is tl
definitions of these fifth order piecewise polynomial functions. As in the cubic case,
Ng+ 1 points grid{x,} is defined. On this grid, 85+ 3 quintic splines are defined:
{Qi(x)}/1 =0...3Ng + 2. Explicit formulas of these polynomial functions can be deducec
from the condensed expression

a7 QsiaJro’(Xb)
Vo,0' € {0, 1, 2} { ox
Qsato(X) =0 VX € [X0, Xa—1] U [Xas1, Xn,] -

= aa,a/aa,b

A function f expanded on this basis is two times differentiable with a continuous secor
derivative on the grid,

3Ng+2

foo =Y aQiX.

i=0

In order to find the solution of Eqg. (2) as an expansion on a quintic spline basis, one |
to determine the By + 3 unknown variables;. In addition to the 2 boundary conditions,
3Ng + 1 collocation points must be defined. In our example we have chosen the followi
partition: 3 collocation points per grid step (Gauss points) plus one located at the cente
the grid (only for everNg). For a more general approaahdrder splines) see [18].

2.6. BSCM Convergence Order

Let us define the sum of two Gaussian functions as a model charge distribution,

2

gr) = 2n) fe 7
p(r) =g —ry) +9(r —ro)
r, = (2.5,2.5,2.5)
o = —TI1.

(29)

A uniform grid is used. The grid’s boundaries are

Xo=Yo=2=—-24
XNZyNZZN=24.

Boundary conditions have been fulfilled analytically. Thus, errors are due only to tt
finite size of the grid step. The analytic expression of the solution of Poisson’s equation

Erf(Jr —r1|/v/2) N Erf(jr — ra|/v/2)

V(r) =
[r —rq] [r — 2

Figure 2 shows the maximum error as a function of the number of collocation points. Sam,
errors are calculated on a uniform 2D mesh (¥0000) in the plane =0. The pointdr;}
of this sample are neither collocation nor grid points. Errors are defined by

ema(V) = fﬂﬁ}x{lﬂfi) — V(rl}.
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FIG. 2. Maximum error for the approximate potential and its derivatives as a function of the number c
collocation points for each space coordinate.

The errors for the derivatives are defined in the same way. In addition to these results, fit
curves have been drawn. Expressions of these polynomial fitting curvésshéréor the
cubic case and h” for the quintic case. Thie's andc’s are the fit parameters, theandg
powers give the orders of the method, whilés the mean-value of the grid step,

XNg — Xo
N

h:

The main results of this figure are summarized in Table I. Cubic related results are
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TABLE |
Convergence Order for the Poisson’s Equation
Solution and Its Derivatives

Vv V. 92V 92V
X axay ax2

Cubic splines o(h% o(hd®) 0o(h®) 0o(h?)
Quintic splines O(h®) o(hd o(hd) o(h%

perfect agreement with [11] in which a systematic analysis of the convergence of cul
spline collocation methods in the 2D case is performed. It should be noticed that the sec
derivative in the quintic case converges as fast as the funetionthe cubic case.

As the calculation time is only a function of the number of collocation points, quintic
splines seem to be superior and one could wonder why low order splines (cubic splines)
be useful. One obvious reason is that, for low accuracies, the difference between cubic
quintic efficiency is not clear. Another reason can be found by considering the applicatic
of the method. Let us assume that one has to calculate the value of the potential and of
electric field many times everywhere inside the mesh. Actually this would be the case
one had to determine the trajectories of a great number of charged particles moving in
mesh. In such a case, the time needed to evaluate the potential at a given positionis an
issue. As we have already seen in Subsection 2.4, such a value can be obtained by a
over 64 terms in the cubic case. There ate=®16 non-zero terms in the corresponding
quintic case and this consideration can, in some situations, disqualify high-order spline

2.7. Comparison with FFT-Based Method

The computational cost of TBSCM has been shown to bd“@N is the number of
collocation points) in Subsection 2.6, while FFT-based methods (see, for example, [10,
have a computational cost proportionalNd In(N) but rely on the use of uniform grids.
Also, N is restricted to be factorizable into a product of small integers, preferentially
power of 2. Because of the multipolar expansion used to find the boundary conditions,
TBSCM can require less floating point operations than FFT-based methods. The followi
example shall illustrate this point. Let us define the charge depshly Eq. (29). The
boundary conditions are obtained using Eq. (28). In order to have a good accuracy us
this expansion, the following grid boundaries have been chosen,

Xo=Yo=2=—-20
XN = Yo = Zn = +20.

Let us first define a uniform gri; using these boundaries with 128 collocation points.
These boundaries have been chosen in such a way that the errors due to the finite size ¢
grid step are comparable with those due to the multipolar expansion. A non-uniform g
G is built in order to obtain a finest grid step th&a in the charged region and a coarser
mesh outside this region. The charge density is almost zero outside a cube defined by

X1,in = Y1in = Z1,in = —5.2

X2in = Yo,in = Z2,in = +5.2.
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TABLE Il
Compared Accuracies Related to a Uniform G;)
and a Non-uniform (G,) Grid

v e(m) () ()
Gi 90E-5 12-4 52-5 1.0E-3
G, B87E-5 31E-4 13-4 16E-3

Inside this cubés; is uniform with 26 collocation points. Outside this cube the grid steps
grow geometrically from the inner cube to the grid boundaries,

Xa+1 — X
2 T VX > Xoin
Xa — Xa-1
Xa — Xa—1
2 o VX < Xoin.
Xa+1 — Xa

The first grid step from the outer part of the grid is chosen to be equal to the inner grid st
Thusr depends only oM,, the number of collocation points in the outer part of the grid.
We choose the smallest value fiNp leading to an accuracy as good as the one obtaine
with the uniform grid. This accuracy is reached when 10 collocation points are placed
the left and right hand sides of the inner grid part (i = 20). Table Il gives accuracies
for these two grids.

The prefactors for FFT-based methods depend on specificimplementation and algorith
Moreover, in all cases, those prefactors are larger than the TBSCM ones (i.e., 12). Therefi
we have chosen to remove them from our computational cost estimate. As the ordel
splines could be different, we assume the same convergence for the finite difference sch
involved in the FFT-based method as the TBSCM one. Obviously, the size required
store the solution is in both cases proportionaNé Using these two assumptions the
computational costs can be calculated. Table Il gives these computational costs.

This example shows clearly (this would have been clearer with prefactors) that the st
ability of the grid to the problem is an issue as important as the computational cost. In t
case of localized 3D charge distribution in vacuum TBSCM is an efficient method compar:
to the FFT-based method.

It should be noticed that FFT algorithms can be useful within the TBSCM approacl
In [2], the authors use the fact that with cubic splines and uniform grids the eigenvectc
and eigenvalue andII in Egs. (19) and (20) are known analytically to apply an FFT
algorithm and then reach@(N3In N) cost for the TBSCM. An extension of the scope
of the FFT-based method to non-uniform grid has been proposed in [8, 9]. Unfortunate

TABLE Il
Computational Costs and Storages Related t&; and G,

Cost (number of operations) Storage size

G; (FFT) 1281In128= 10.2E6 128 = 2.1E6
G, (TBSCM) 46" = 4.5E6 46 = 9.7E4
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this method based on Riemannian geometry makes a direct solving of Poisson’s equa
difficult and therefore an iterative method is proposed.

The method presented here is direct and straightforward to implement since it involv
mainly matrix-vector products. The next section describes the parallelization of the meth
which greatly benefits from this simple structure. Finally, it is important to note that mor
complicated methods like multi-grid which scales almost linearly with the number of gri
points(O(N?)) are superior to the present approach for large enough grid sizes.

3. PARALLELIZATION OF TBSCM

The TBSCM code seemed to be a good candidate for data parallel programming, :
more precisely for high performance Fortran (HPF) programming [6], because itis a regu
problem with static control which handles basic data structures (i.e., arrays) with principa
linear access to memory. Thus, we decided to port the TBSCM code in high performar
Fortran. In the following the sequential program that implements TBSCM is dadiex$on

As explained in Section 2, the partBbissonthat is the most computationally intensive
is the tensor vector product. We first extracted the tensor vector product from the wh
code in order to facilitate the test of different parallelization strategies. This appeared
be a good decision since we developed numerous parallel versions of the tensor ve
product. In the following, the fragment of code that implements the tensor vector prodt
is calledTensrus We will briefly describe in Subsection 3.2 the main stepJefsrus
parallelization. The complete description of the tensrus parallelization is given in [1]. Tt
porting of the whole code in HPF and its performance are presented in Subsection 3.3.

3.1. Target Machines and Compilers

During theTensrusparallelization, we used three different MPP Cray machines, a T3D,
T3E-600, and a T3E-750, and mainly the pghpf HPF compiler from Portland Group [17,
Table IV summarizes the characteristics of the target machines. Our experience of par:
programming on the Cray T3D and T3E showed that we generally obtained 10% of th
peak performance.

3.2. Parallelizing the Tensor Vector Product

We will describe in this section the main stepsTefsrus parallelization.Tensrus per-
forms exactly 6< N* floating-point operations. The Mflops (millions of operations per-
formed in one second) is a good criteria to compare the different parallel versidags-of
srus. For a given parallel version @ensrus Mflops per processor measured with different

TABLE IV
Target Machines Characteristics (1)

Clock speed Peak perf. Bandwidth
System No. proc. DECchip MHz Mflops MB/PE Peak (MB/s)
Cray T3D 128 21064 150 150 64 300
Cray T3E-600 128 21164 300 600 128 600

Cray T3E-750 256 21164 375 750 128 600
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number of processors evaluates its scalability. Basica#insrus is composed of three
four-dimensional loop nests. The arrays manipulated are two- and three-dimensional. E
loop nest contains three parallel loops and one reduction on the last one. In order to incre
the grain parallelism, one has usually to make a parallel loop as computationally intens
as possible and thus to reduce the number of parallel loops. In other words, inside a Ic
nest the parallel loop is the outer one. This is done simply in HPF by adding a compilati
directive!HPF$ INDEPENDENT specifying that the loop must be distributed across the
processors of the parallel target machine. Then, the data have to be distributed in such a
that the processors own as much as possible of the data needed to perform the compute
In the Tensrus program, the three-dimensional arrays manipulatedBit®CK, x*, *) or

*, x, BLOCK ) distributed* The two-dimensional arrays are replicated. In HPF, such arra
distributions are done by inserting compilation directives in the source code. As an examy
the directiveHPF$ DISTRIBUTE (BLOCK, x, %) :: fp means that we want the arrfry

to be distributed according to its first dimension. Thus, each processor will own consecut
lines offp. All the data transfers between processors occurring during the parallel executi
of Tensrusare due to an array redistribution between the two last loop ne3ensfus

The performance of this first parallel versiorntefisruscompiled by pghpf2.1 ona T3D
and T3E-600 are the following. The experiments have been performed dartags. On a
T3D, the parallel code leads to linear speed-up on 2 to 128 processork3iitfiops/PEs
and 1.7 GFLOPs on 128 PEs. On a T3E-600, the parallel code leads to linear speec
on 1 to 64 processors wi28 Mflops/PEs and 2.1 GFLOPs on 128 PEs. These results ar
already acceptale. But we were not satisfied since the performance of the sequential ver
was four times better than the performance per processor of the HPF version. Indeed,
sequential version aénsruscompiled by the Cray Fortran 90 compiler achievddiflops
on T3D and 136 Mflops on T3E-600.

The reasons for the loss in efficiency have been clearly established. The pghpf comp
executes roughly two steps. In the first step pghpf transforms the user’'s HPF code int
message passing program. Then, during a second step this intermediate message pa
program is submitted to the native F90 compiler of the target machine. When the sequen
version ofTensrusis submitted to the native FO0 complier, the complier recognizes the
Tensrusperforms a matrix-vector product. Thus, it replaces the corresponding fragment
code by an optimized routines of the TBRGEMV for the T3E). When the whole code
is submitted to the pghpf compiler, it modifies so much the original code that the nati
F90 compiler does not recognize any longer the matrix-vector product. Thus, we decid
to gather the computations contained in the three loop neJesnsfrus (which are “local”
computaions) irPURE subroutines complied separately with the Cray Fortran 90 native
compiler in such a way that it replaces the code fragment that performs a matrix-vec
product by a call to the optimized subroutine.

The performance on the T3D is very god@énrus achieved 8.4 GFLOPS on 128 pro-
cessors, that is, 66 Mflops per processor. Moreover, the scalability is very good up to
processors, where linear speed-up is achieved. The performance on T3E-600 decre
rapidly because there are not enough computations to feed the T3E-600 processors. Tt
confirmed by the numbers we obtained on larger arrays. As shown in Table V, we obtair

! Multi-dimensional distributions are not good data distribution candidates fofehsrus program because
they increase the amount of communication and decrease the grain parallelism compared to mono-dimensi
data distributions.
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TABLE V

PGHPF 2.1: 256° Arrays

T3E-600 measures

No. of proc. 8 16 32
Mflops 1093 2165 4237
Mflops/PE 136 135 132

64
8098
126

128
14083
110
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very good scalability with an array size of Z58nd the performance per processor of the

parallel code is very close to that of the sequential version.

It was clear that the last potential source of inefficiency was the necessary redistribut
of one of the three-dimensional arrays between the two last loop nesensfus Thus,
instead of letting the HPF compiler perform it, we wrote a message passing routine tl
performs this redistribution. We wrote two versions of the routine. One invoking the messa
passing interface library [16] and one using the Cray ShMem library [15]. This library i
implemented on Cray T3x and SGI Origin systems and provides communications w
high bandwidth and low latency. The loss of portability is the main drawback, but with th
forthcoming MPI2 standard it will be possible to use the one-sided communications moc
of ShMem in a portable and efficient way. The “ShMem” version is better than the “MPI
version, scales very well, and achieves very good performance: Table VI summarizes

performances of the final step versionslefisrus.

On 512 arrays this version dfensrus(using ShMem) achievet3 GFLOPs orl28PEs
(i.e.,341Mflops/PEs) an@5 GFLOPs o256 PEs (i.e. 332 Mflops/PEs). This represents
about50% of the T3E-750 peak performance. These results are very satisfactory. Thus,

decided to stop the parallelization &nsrushere.

3.3. Putting It All Together

Compared to the parallelization ®&nsrus, the implementation of the whole code was
fast and easy. The parallel code remains very close to the sequential one. Our first task
to add HPF directives for the distribution of all the three-dimensional arrays. Obvious
these array distributions correspond to the one specifie@iebgrus Then, the 3D and

TABLE VI

HPF-MPI and HPF-ShMem Versions, T3E-750, PGHPF2.3

No. of proc. 2 4 8 16 32 64 128
128 arrays

“MPI" version, Mflops 492 974 1896 3532 6375 8568 11454

“ShMem” version, Mflops 547 1072 2083 4026 7437 13261 17607

“ShMem” version, Mflops/PE 273 268 260 252 232 207 138
256 arrays

“MPI" version, Mflops 2306 4559 8931 16376 29422

“ShMem” version, Mflops 2541 4977 9792 19045 36064

“ShMem” version, Mflops/PE 318 311 306 298 282
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TABLE VII
Whole Code, T3E-750, PGHPF2.3

No. of proc. 4 8 16 32 64 128

T3E-750, PGHPF2.3, 12&rrays

TIME (s) 8.08 4.18 2.21 1.17 0.66
Mflops 824 1576 2912 5344 9088
Mflops/PE 206 197 182 167 142
% of Tensrus 82% 82% 79% 75% 69%

T3E-750, PGHPF2.3, 25@rrays

TIME (s) 7.08 3.82
Mflops 15232 27520
Mflops/PE 232 215
% of Tensrus 82% 7%

4D loop nests (about 20) have been successfully parallelized by adding independent F
directives. Actually, the only new task consisted of taking into account the fact that, in t
parallel version, two kinds of 3D-arrays appear, namely Byex( %) and the &, *, B). In
order to save space, 3D-arrays are used to store different things during the calculations,
therefore we had to optimize their use to avoid redistributions.

The parallel version oPoissonruns only with more than 4 (resp. 64) processors on
128° (resp. 258) arrays because of the memdPgissonconsumes. We give in Table VII
the execution times measured experimentally and the Mflops obtaiRedcentages of
execution time spent ifensrusare also given. These measurements are also plotted Fig.

3.4. Parallelization of TBSCM: Concluding Remarks

The parallel version oPoissonachieves nearly linear speed-up until 128 (resp. 32)
processors with 256(resp. 128) arrays® It achievesgood performancsince nearly 215
Mflops per processor are obtained on a Cray T3E-750 witl§ a6@ys on 128 processors
which leads to a total of 27.6 Gflops (27.6°fbating points operations per second).

It is nearly the same code plus only 64 lines of HPF directives and 130 lines of MF
routine calls. The additional lines of code and directives in the parallel version only repr
sent 2% of the total size #foisson This makes the parallel versionBbissonasreadable
as the sequential one. The few parts of code that contain MPI routine calls are enclo
by compilation directives. This allows us to only have one code to maintain instead |
two: the sequential and the parallel versioMsintainability of the code is increased.
Maintaining only one code that contains both the sequential version and the parallel v
sion is a much harder job with message passing programming. The sequential progt
has to be transformed in order to take into account the way the work is distributed a

2 The number of floating point operations performedAmjssonis not known exactly, as it is for th&ensrus
computational kernel. Mflops have been measured RAth, a performance analyzer tool available on TBET
has been shown to give accurate measures on various programBgesgus). Mflops are given here as landmarks
but not as performance measure criteria.

3Forn e [4, 32] with 128 arrays, the ratio between the execution timexgrocessors and the execution time
on 2x n processors is equal th9.
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FIG.3. Whole code time measurements, T3E-750,%1@8ays.

the way the data are distributed and communicated between the processes of the pal
execution.

The parallel code achievgmrtability since one efficient version has been written that
contains only HPF directives and MPI routines calls.

Correctness of the numerical results, ease of parallel programming, good readability
maintainability of the parallel program, absolute performance, scalability, and portabili
have been attained.

The parallel implementation of TBSCM that we carried out solves Poisson’s equatit
with 256° (resp. 128) grids in 3.82 s (resp. 0.66 s) on 128 processors (resp. 64 processol
In practice TBSCM, included in our physical simulation code (Vlasov), is used with& 12¢
grid and 32 processors. Using such a grid was impossible on the sequential worksta
(DEC alpha EV56 400 MHz) we used before parallelization, not because of storage |
because of CPU time. On this workstation the time required to solve tHech28 is 30.5 s.
This is 25 times more than using 32 processors on the T3E-750.

4. CONCLUSION

We have given a self-contained description of the TBSCM Poisson solver. The practi
calculation of the boundary conditions in the framework of spline basis has been detail
This solver has been shown to be competitive with FFT-based methods in the case
a localized 3D charge distribution in vacuum because of the non-uniform meshes it c
handle. This direct approach has also been shown to be faster than iterative methods.
have emphasized th@(h*) andO(h®) convergence of the basis spline collocation methoo
in the cubic and quintic case, respectively. We described finally the parallel implementati
of the method and emphasized its high performance and good scalability on a distribu
memory T3E Cray machine.
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