
Journal of Computational Physics157,419–440 (2000)

doi:10.1006/jcph.1999.6338, available online at http://www.idealibrary.com on

Tensorial Basis Spline Collocation Method
for Poisson’s Equation

Laurent Plagne∗ and Jean-Yves Berthou†
∗Département de Recherche Fondamentale sur la Matière Condenśee, CEA-Grenoble, 17 Rue des Martyrs,

38054 Grenoble Cedex 9, France; and†EDF-DER/IMA/MMN/ISA, 1, Av. du General de Gaulle,
92141 Clamart Cedex, France

E-mail: plagne@ilt.fhg.de

Received June 29, 1998; revised April 15, 1999

This paper aims to describe the tensorial basis spline collocation method applied
to Poisson’s equation. In the case of a localized 3D charge distribution in vacuum,
this direct method based on a tensorial decomposition of the differential operator
is shown to be competitive with both iterative BSCM and FFT-based methods. We
emphasize theO(h4) and O(h6) convergence of TBSCM for cubic and quintic
splines, respectively. We describe the implementation of this method on a distributed
memory parallel machine. Performance measurements on a Cray T3E are reported.
Our code exhibits high performance and good scalability: As an example, a 27 Gflops
performance is obtained when solving Poisson’s equation on a 2563 non-uniform 3D
Cartesian mesh by using 128 T3E-750 processors. This represents 215 Mflops per
processors. c© 2000 Academic Press

Key Words:Poisson solver; Vlasov equation; orthogonal spline collocation; tensor-
product; multipolar expansion; direct method; 3D Cartesian non-uniform grids; par-
allel implementations.

1. INTRODUCTION

Elliptic equations occur in a large class of physical problems and the computational cost
of their solution is usually a major factor in computer simulation code design. Depending
on the physical problem to be solved, one must choose very carefully a numerical method
from among the large number of methods available for this class of differential equations.
In practice, the main issue for 3D problems is to achieve the shortest time of calculation
for a given accuracy. This calculation time, considered as the main feature of the numerical
method, is a function of three parameters: the grid size, the algorithmic cost, and the
efficiency of the implemented code. The grid size (the number of grid cells) needed to reach
a given accuracy depends on the order of the method (e.g., the order of a finite difference

419

0021-9991/00 $35.00
Copyright c© 2000 by Academic Press

All rights of reproduction in any form reserved.

420 PLAGNE AND BERTHOU

scheme) and on the suitability of the grid to the physical problem. The algorithmic cost,
which is the number of operations required to perform the calculation as a function of the
grid size, is obviously another essential feature. The efficiency of the implemented code
depends mainly on the optimization level attainable with the compiler used on sequential
computers, together with the suitability of the method for a parallel implementation on
parallel computers. Obviously, in order to judge the merit of a proposed method, practical
parameters for a physical problem (e.g., the required accuracy) must be clearly defined.
This paper aims to describe a numerical method as practically as possible, that is to say,
keeping in mind the overriding importance of the calculation time.

The method presented here has been designed to solve Poisson’s equation for a localized
3D charge distribution in vacuum in the context of cluster physics [7, 14]. In this case,
one can obtain the boundary conditions using a multipolar expansion, which requires, for
high accuracies, the use of very large grids compared to the spatial extent of the charge
density. Non-uniform grids are highly desirable, since they allow an accurate meshing of the
charged region and at the same time, a large spatial extent of the grid using a relatively low
number of grid cells. The non-uniform Cartesian grids which are used make this method an
intermediate case between FFT-based methods which are very fast but use uniform grids
not well suited to a multipolar expansion, and finite element methods, which are slower
but very efficient for handling problems with a complex geometrical structure. Another
essential feature of the method is the use of a cubic or quintic spline basis. The principle
is to look for an approximate solution of the differential equation as an expansion on a
spline basis. Solving the original differential equation is then equivalent to solving a linear
systemAX= B where the matrix A is huge and sparse in the 3D case. The basis spline
collocation method is described in detail in the paper [18]. The authors deal not only with
elliptic equations but also with eigenvalue problems (e.g., the Schroedinger equation) and
indicate an iterative method to solve the resulting linear systems. However, a direct (i.e.,
non-iterative) algorithm can be used in the particular case of elliptic equations on Cartesian
grids by maintaining a tensorial structure throughout the calculations.

Part 2 describes the derivation of the method. In order to introduce all the spline-related
notations, the case of one-dimensional differential equations is discussed in Subsection 2.1.
The 3D case is treated in Subsection 2.2 where all tensorial notations are introduced. The
computational costO(N4) of the method is calculated in Subsection 2.3, allowing one to
compare this direct method with iterative methods. Subsection 2.4 gives a detailed treatment
of boundary conditions. In Subsection 2.5 we generalize the method to the Helmholtz
equation and to the use of quintic splines. TheO(h4) andO(h6) orders of TBSCM for the
cubic and quintic cases respectively are emphasized in Subsection 2.6. Subsection 2.7 gives
a comparison between TBSCM and FFT-based methodsO(N3 ln(N)).

Section 3 describes the parallel implementation of TBSCM on Cray distributed memory
machines. Subsection 3.1 introduces the different target machines. The mixed HPF-MPI
parallel implementation of the computational kernel is detailed in Subsection 3.2. Perfor-
mances and scaling of the whole code are emphasized in Subsection 3.3.

2. TENSORIAL BASIS SPLINE COLLOCATION METHOD

2.1. Spline Basis and the One-Dimensional Case

2.1.1. Cubic splines.Because several definitions can be found for a cubic spline [3],
we first give the definition to be used in this paper. Let us first introduce a grid com-
posed ofNg+ 1 points{xa}/x0< x1< · · · < xa< · · · < xNg on which are defined 2Ng+ 2

TBSCM POISSON SOLVER 421

third-order piecewise polynomial functions (cubic splines):{Si (x)}/ i = 0 . . .2Ng+ 1. One
can define uniquely the two kinds of splines, namely odd and even splines, by giving the
following conditions at the grid points:

S2a(xa) = S′2a+1(xa) = 1

S′2a(xa) = S2a+1(xa) = 0

S2a(x) = S2a+1(x) = 0 ∀x ∈ [x0, xa−1] ∪ [xa+1, xNg

]
.

These conditions lead to the explicit formulas

S2a(x) =


3
(x− xa−1

xa− xa−1

)2− 2
(x− xa−1

xa− xa−1

)3 ∀x ∈ [xa−1, xa]

3
(xa+1− x

xa+1− xa

)2− 2
(xa+1− x

xa+1− xa

)3 ∀x ∈ [xa, xa+1]

0 ∀x ∈ [x0, xa−1] ∪ [xa+1, xNg

]
(1)

S2a+1(x) =


(xa − xa−1)

[(x− xa−1

xa− xa−1

)2− (x− xa−1

xa− xa−1

)3
]

∀x ∈ [xa−1, xa]

(xa+1− xa)
[(xa+1− x

xa+1− xa

)2− (xa+1− x
xa+1− xa

)3
]

∀x ∈ [xa, xa+1]

0 ∀x ∈ [x0, xa−1] ∪ [xa+1, xNg

]
.

Figure 1 shows odd and even cubic splines.
A function f expanded on this basis is differentiable with a continuous first derivative

on the grid,

f (x) =
2Ng+1∑

i=0

ci Si (x).

Because there is only one non-zero spline and one non-zero differentiated spline at a grid
point xa, f (xa) and f ′(xa) are given simply by

f (xa) = c2aS2a(xa) = c2a

f ′(xa) = c2a+1S′2a+1(xa) = c2a+1.

FIG. 1. Odd and even cubic splines.

422 PLAGNE AND BERTHOU

2.1.2. One-dimensional equation.In order to describe the basis spline collocation
method, we shall treat a simple differential equation in one dimension. Let us consider
the differential equation

∂2V(x)

∂x2
= ρ(x). (2)

Boundary conditionsV(x0)=V0 andV(xNg)=VNg are known. We are looking for an ap-
proximate solutionφ(x)'V(x) as an expansion on the spline basis,

φ(x) =
2Ng+1∑

i=0

ci Si (x). (3)

Hence, the problem is now to determine the{ci } coefficients. Obviously, two coefficients are
already known:c0=V0 andc2Ng =VNg . In order to determine the 2Ng remaining unknown
coefficients{ci } one has to define 2Ng equations.

2.1.3. Collocation points. Let us now introduce the so-called 2Ng collocation points
{x̄α} chosen to be the Gauss points on each grid step [xa, xa+1],

x̄2a+1 = (xa+1+ xa)

2
− (xa+1− xa)

2
√

3
(4)

x̄2a+2 = (xa+1+ xa)

2
+ (xa+1− xa)

2
√

3
.

For convenience, we also definex̄0= x0 andx2Ng+1= xNg . We thus obtain, by applying the
differential equation (2) at each collocation point, the 2Ng equation,

2Ng+1∑
i=0

ci S
′′
i (x̄α) = ρ(x̄α) ∀α ∈ [1, 2Ng]. (5)

We will continue to use Greek indexes for collocation points (i.e., real space) while Roman
indexes will be used for splines.

The derivativesS′i andS′′i are determined analytically from the polynomial expression (1).

2.1.4. Matrix notations. The discretization of the problem has been achieved by the
use of a cubic spline basis. It is now useful to introduce a matrix notation. We define two
matricesSandS′′ [2Ng + 2)2] and vectorsφ andC [2Ng+ 2] as

∀α, i ∈ [0, 2Ng + 1]


Sαi = Si (x̄α)

S′′αi = S′′i (x̄α)
φα = φi (x̄α)

Ci = ci .

It is now possible to rewrite these equations in a condensed form,

φ(x̄α) =
2Ng+1∑

i=0

ci Si (x̄α) ∀α ∈ [0, 2Ng + 1]

⇔ φ = SC. (6)

TBSCM POISSON SOLVER 423

We introduce the operatorD= S′′S−1, which satisfiesDφ= S′′S−1SC= S′′C. We can
rewrite Eq. (5) in the form

[Dφ]α =
2Ng+1∑

i=0

S′′αi Ci =
2Ng+1∑

i=0

ci S
′′
i (x̄α) ∀α ∈ [0, 2Ng + 1]

= ρ(x̄α) ∀α ∈ [1, 2Ng]. (7)

Boundary conditions must be separated from the unknown variablesci (i.e., in the rhs).
This is achieved by splitting this sum in two terms,

[Dφ]α =
2Ng+1∑
α′=0

Dαα′φα′ =
2Ng∑
α′=1

Dαα′φα′ +
∑

A=0;2Ng+1

DαAφA. (8)

By combining Eqs. (7) and (8), the discretized differential equation can be rewritten

2Ng∑
α′=1

Dαα′φα′ = ρ(x̄α)−
∑

A=0;2Ng+1

DαAφA ∀α ∈ [1, 2Ng]. (9)

In order to rewrite this equation in a matrix form some new matrices and vectors must be
defined. We define the sub-matrices and sub-vectors of dimensions [(2Ng)

2] and [2Ng],
respectively,

∀α, α′ ∈ [1, 2Ng]


D̃αα′ = Dαα′

φ̃α = φα
ρ̃α = ρα − (Dα0φ0+ Dα2Ng+1φ2Ng+1).

The final expression of the original differential equation is therefore

D̃φ̃ = ρ̃. (10)

At this point, one can easily solve Eq. (10) by performing the inversion of the square matrix
D̃. Then, it is straightforward to get̃φ= D̃−1ρ̃. The φ̃ vector contains the approximate
solution at all collocation points. It should be noticed that several methods (e.g., finite
difference method) stop at this point. In the BSCM case, the interpolation needed to get
the approximate solution between collocation points is indeed natural. The use of spline
basis in Eq. (3) transforms a continuous problem into a discrete one and can obviously be
used to recover a continnous approximate solution. By buildingφ from φ̃ and the boundary
conditions, and by inverting Eq. (6), one can obtainC= S−1φ and use Eq. (3) to get a
continuous approximate solution known everywhere inside the grid.

2.2. Three-Dimensional Poisson’s Equation

Subsections 2.2.1 and 2.2.2 show that the procedure for the three-dimensional case is
a straightforward generalization of the one-dimensional case. One can easily obtain an
equation similar to Eq. (10) that can be solved by using an iterative scheme, as proposed
in [18]. Subsection 2.2.3 proposes a direct method based on tensorial decomposition which
differs from the iterative BSCM treatment.

424 PLAGNE AND BERTHOU

Let us first consider Poisson’s equation using Hartree units.V(r) is the electrostatic pote-
ntial due toρ(r), a known localized charge density,

∇2V(x, y, z) = −4πρ(x, y, z). (11)

For each dimension, a grid (which can be different in size and location) must be cho-
sen: {xa}, {yb}, {zc}. To simplify the notations, the grid sizes are chosen to be equal,
N x= N y= Nz= Ng. From these three grids, three [2Ng+ 2] collocation grids are de-
fined (Eq. (4)):{x̄α}, {ȳβ}, {z̄γ }. Here again, the aim is to find an approximate solution to
Eq. (11) defined on a 3D cubic spline basis,

φ(x, y, z) =
2Ng+1∑
i jk=0

ci jk SXi (x)SY j(y)SZk(z). (12)

The discrete problem is now to determine the(2Ng+ 2)3 unknown variablesci jk by ap-
plying the differential equation at the(2Ng)

3 inner collocation points and by using the
(2Ng+ 2)3− (2Ng)

3 boundary conditions. We now assume that the values of the potential
at the surface of the 3D rectangular grid are known,

φαβγ for α or β or γ = 0 or 2Ng + 1. (13)

We define, as we have done for the 1D case, the matrices [(2Ng+ 2)2] SX, SY, SZ, S′′X, S′′Y,
S′′Z, DX, DY, DZ and the sub-matrices [(2Ng)

2] D̃X, D̃Y, D̃Z . The sub-vector ˜ρ includes
once again the boundary conditions,

ρ̃αβγ = 4πρ(x̄α, ȳβ, z̄γ)−
∑

A=0;2Ng+1

DXαAφAβγ −
∑

B=0;2Ng+1

DYβBφαBγ

−
∑

C=0;2Ng+1

DZγCφαβC.

In order to be able to write down the equation corresponding to Eq. (10), we have to introduce
new notations.

2.2.1. Tensorial notations.Let us consider three square matrices [(2Ng+ 2)2] relative
to each dimension:AX, AY, AZ . We introduce a tensorial operatorAXY Z with [(2Ng+ 2)6]
elements as the tensorial product of the threeA operators,AXY Z= AX ⊗ AY ⊗ AZ . Each
element of this three-dimensional operator is defined by

[AXY Z]αβγ,i jk = AXαi AYβ j AZγ k.

Two three-dimensional operators can be combined by a tensor–tensor product,

AXY Z = BXY ZCXY Z

⇔ [AXY Z]αβγ,i jk =
∑
abc

[BXY Z]αβγ,abc[CXY Z]abc,i jk .

TBSCM POISSON SOLVER 425

The tensor-vector product between a three-dimensional operatorAXY Z and a three-dimen-
sional vectorUXY Z with [(2Ng+ 2)3] elements is also defined,

VXY Z = AXY ZUXY Z

⇔ [VXY Z]αβγ =
∑
abc

[AXY Z]αβγ,abc[UXY Z]abc.

Introdcing the three-dimensional identity operatorI XY Z= I X ⊗ IY ⊗ I Z , one can easily
verify the properties {

(AX ⊗ BY ⊗ CZ)
−1 = A−1

X ⊗ B−1
Y ⊗ C−1

Z

(AXY ZBXY Z)
−1 = B−1

XY ZA−1
XY Z.

(14)

2.2.2. Discrete Poisson’s equation on a tensorial form.By using these newly introduced
definitions, one can now write Eq. (12) applied at the collocation points,

φXY Z = [SX ⊗ SY ⊗ SZ]CXY Z. (15)

It is now possible to write down in a condensed form Poisson’s equation corresponding to
Eq. (10) in the one-dimensional case. We first build the Cartesian Laplacian operator∇̃2

XY Z,

∇̃2
XY Z = [D̃X ⊗ Ĩ Y ⊗ Ĩ Z + Ĩ X ⊗ D̃Y ⊗ Ĩ Z + Ĩ X ⊗ Ĩ Y ⊗ D̃Z]. (16)

Poisson’s equation can finally be written

∇̃2
XY Zφ̃XY Z = ρ̃XY Z. (17)

At this point, the one-dimensional problem was over and the solutionφ̃ could be obtained
by φ̃= D̃−1ρ̃. Similarly, one could easily transform Eq. (17) into a standard matrix equation
by introducing super-indexes,

I = i + 2 j (Ng + 1)+ 4k(Ng + 1)2

0 = α + 2β(Ng + 1)+ 4γ (Ng + 1)2.

Here, I corresponds uniquely to a set(i, j, k) and0 to a set (α, β, γ). Using this one-
to-one mapping, one can transform the tensorial operator∇̃2

XY Z, and the tensorial vectors
φ̃XY Z, ρ̃XY Z, andCXY Z, into standard matrix and vectors,

[∇̃2]00′ =
[∇̃2

XY Z

]
αβγ,α′β ′γ ′

[φ̃]0 = [φ̃XY Z]αβγ

[ρ̃]0 = [ρ̃XY Z]αβγ

[C] I = [CXY Z] i jk .

One can rewrite Eq. (17) as a matrix equation equivalent to the 1D Eq. (10),

∇̃2φ̃ = ρ̃. (18)

426 PLAGNE AND BERTHOU

The dimension of the matrix̃∇2 is (2Ng)
6. For a typical number of collocation points,

2Ng= 100 this leads to 1012 matrix elements. This matrix is fortunately extremely sparse.
From the definition of the cubic splines one can see that there are only 4 non-zero splines
at a given collocation point in one dimension. In the 3D case this leads to 64 non-zero
elements per matrix row and to 64(2Ng)

3 non-zero elements for the matrix̃∇2. However,
one cannot perform the inversion of this matrix because the inverse of a sparse matrix is not
sparse and contains 1012 non-zero elements, which is impossible to store. The usual way to
solve this kind of problem is to calculatẽφ using an iterative method. Basically, one tries a
guessed solutioñφi , then performs the product ˜ρ i =∇̃2φ̃i and uses the difference ˜ρ− ρ̃ i to
calclate an improved guessφ̃i+1. This scheme is repeated iteratively until a given accuracy
is reached. It should be noticed that the initial guessφ̃i must be chosen “good enough” to
ensure the convergence of the iterative scheme.

At each step, the matrix-vector product∇̃2φ̃i requires 128(2Ng)
3 operations. However,

because of the tensorial structure of∇̃2
XY Z, a direct (i.e., non-iterative) method to solve

Eq. (17) is available.

2.2.3. Tensorial decomposition.This direct method relies on the fact that the inverse
tensorial operator̃∇2−1

XY Z can be calculated as a function of small 1D matrices and a 3D
operator made as simple as possible (diagonal). The first step is to diagonalizeD̃X, D̃Y, D̃Z ,

D̃X = M̃ X5̃X M̃−1
X ; D̃Y = M̃Y5̃Y M̃−1

Y ; D̃Z = M̃ Z5̃Z M̃−1
Z , (19)

where5̃X, 5̃Y, 5̃Z are diagonal matrices,

[5̃X]αα′ = δαα′ l xα

[5̃Y]ββ ′ = δββ ′ l yβ (20)

[5̃Z]γ γ ′ = δγ γ ′ l zγ .

Since the operators̃DX, D̃Y, D̃Z are not symmetrical, this diagonalization can lead to com-
plex matricesM̃ and 5̃. In the case of cubic splines on uniform Cartesian grids, these
matrices have been proved to be real [2]. Since the complex case should be a straight-
forward generalization, we assume these matrices to be real in the following. Using this
transformation, one can rewrite Eq. (16) as

∇̃2
XY Z = M̃ X5̃X M̃−1

X ⊗ Ĩ Y ⊗ Ĩ Z + Ĩ X ⊗ M̃Y5̃Y M̃−1
Y ⊗ Ĩ Z + Ĩ X ⊗ Ĩ Y ⊗ M̃ Z5̃Z M̃−1

Z .

Using an obvious property of the identity operator,Ĩ X = M̃ X Ĩ X M̃−1
X , we obtain

∇̃2
XY Z = (M̃ X ⊗ M̃Y ⊗ M̃ Z)P̃XY Z

(
M̃−1

X ⊗ M̃−1
Y ⊗ M̃−1

Z

)
with

P̃XY Z = 5̃X ⊗ Ĩ Y ⊗ Ĩ Z + Ĩ X ⊗ 5̃Y ⊗ Ĩ Z + Ĩ X ⊗ Ĩ Y ⊗ 5̃Z .

The main point is thatP̃XY Z is diagnal for all dimensions allowing one to calculate its
inverse, [

P̃−1
XY Z

]
αβγ,α′β ′γ ′ =

δαα′δββ ′δγ γ ′

l xα + l yβ + l zγ
.

TBSCM POISSON SOLVER 427

Using the properties (14) one can finally write the inverse operator∇̃2−1

XY Z,

∇̃2−1

XY Z = (M̃ X ⊗ M̃Y ⊗ M̃ Z)P̃
−1
XY Z

(
M̃−1

X ⊗ M̃−1
Y ⊗ M̃−1

Z

)
. (21)

This direct approach to performing the inversion of a tensorial operator was derived for the
first time in the context of the finite difference schemes in [13].
φ̃XY Z is obtained by performing the tensor-vector product,

φ̃XY Z = ∇̃2−1

XY ZρXY Z. (22)

Then, one can rebuildφXY Z and obtainCXY Z using Eq. (15),

CXY Z =
(
S−1

X ⊗ S−1
Y ⊗ S−1

Z

)
φXY Z. (23)

Using Eq. (12), the approximate solution and its two first derivatives are known everywhere
inside the mesh.

2.3. Algorithmic Cost; Comparison with Iterative Methods

Most of the mathematical papers dealing with elliptic partial differential equations give a
detailed account of the number of floating-point operations required for a given algorithm.
In many of them, a 2D square mesh is used to describe a method. Practically, in the 3D
case, calculations on 1D matrices (e.g.,D̃X = M̃ X5̃X M̃−1

X) have a computational cost very
low compared to the cost of the 3D calculations involved in the method. The gap between
the cost of 1D and 3D calculations is even bigger when Poisson’s equation is to be solved
many times on the same grid because all the 1D matrices (Sx, D̃x, M̃x, . . .) are built once,
whereas 3D calculations like (22) have to be done each time. By far the most expensive steps
of the method are the two tensor-vector products in (22). As an example, the tensor-vector
product (23) can be split in three operations (for convenience we defineN= 2Ng+ 2 to be
the number of collocation points),

[CXY Z] i jk =
N−1∑
αβγ=0

[
S−1

X

]
iα

[
S−1

Y

]
jβ

[
S−1

Z

]
kγ

[φXY Z]αβγ

=
N−1∑
αβ=0

[
S−1

X

]
iα

[
S−1

Y

]
jβ

(
N−1∑
γ=0

[
S−1

Z

]
kγ

[φXY Z]αβγ

)
.

We calculate successively the two intermediate vectorsC′XY Z andC′′XY Z and obtain finally
CXY Z,

[C′XY Z]αβk =
N−1∑
γ=0

[
S−1

Z

]
kγ

[φXY Z]αβγ

[C′′XY Z]α jk =
N−1∑
β=0

[
S−1

Y

]
jβ

[C′XY Z]αβk

[CXY Z] i jk =
N−1∑
α=0

[
S−1

X

]
iα

[C′′XY Z]α jk .

One can easily count from these three equations that the tensor-vector product costs 3N4

428 PLAGNE AND BERTHOU

real multiplications and 3N4 real additions. Equation (22) requires 2 tensor-vector products.
The total algorithmic cost of the method is about 12N4 floating point operations (18N4 if
the interpolation (23) is done). The parallel implementation and optimization of this tensor-
vector product is detailed in Section 3.

Each step of the corresponding iterative method costs 128N3 (see Subsection 2.2). As-
suming 100 to be a typical value forN, it is straightforward to see that an iterative method
should not exceed 10 iterations to remain competitive with TBSCM. For this size of linear
system, 10 iterations are very few, even if a suitable preconditioner is used, and one would
usually expect at least 50 iterations to reach an acceptable solution. For a givenN, the
maximum number of iterations leading to a competitive iterative scheme is

12N4

128N3
= 12

128
N.

In addition, the use of a direct method allows us to avoid handling possible convergence
problems of iterative methods.

2.4. B-Spline Extras; Boundary Conditions

2.4.1. Differentiation and integration procedure.It has been emphasized in the descrip-
tion of the 1D case that the natural interpolation (23) is not necessary when the electrostatic
potential is only required at the collocation points. However, in many physical applications,
one has to evaluate the potential and the electric fieldE everywhere inside the mesh. This
is obviously the case when trajectories of charged particles are needed. In order to evaluate
this field one has to differentiate the potential given by Eq. (12). For theX component of
this field this leads to

∂φ

∂x
(x, y, z) =

N∑
i jk=0

ci jk S′Xi (x)SY j(y)SZk(z).

There are only 64 non-zero terms in this sum. To specify in which mesh cell the point
(x, y, z) is, we definea, b, andc as

x ∈ [xa, xa+1]; y ∈ [yb, yb+1]; z ∈ [zc, zc+1].

Then the 64-term sum can be written

∂φ

∂x
(x, y, z) =

2a+3∑
i=2a

2b+3∑
j=2b

2c+3∑
k=2c

ci jk S′Xi (x)SY j(y)SZk(z).

From the spline’s polynomial definitions (Eq. (1)), the analytical expressions for the spline’s
derivative can easily be calculated without further approximations.

The polynomial nature of splines is also used to perform accurate integrations. As an
example, consider the spatial integration of the potentialφ inside the mesh,

I =
∫ ∫ ∫

φ(r) d3r

=
∫ ∫ ∫ N∑

i jk=0

ci jk SXi (x)SY j(y)SZk(z) dx dy dz

=
N∑

i jk=0

ci jkωiω jωk

TBSCM POISSON SOLVER 429

with

ωi =
∫ xNg

x0

Si (x) dx; ω j =
∫ yNg

y0

Sj (y) dy; ωk =
∫ zNg

k0

Sk(z) dz. (24)

Once again theωs are determined analytically and involve no further approximations.
Furthermore, theseωs depend only on the mesh and thus have to be calculated only once.
The calculations of the electrostatic boundary conditions (Eq. (13)) use this integration
procedure.

2.4.2. Boundary conditions.This paper will describe only Dirichlet boundary condi-
tons, though other kind of boundary conditions can be handled by BSCM (see [18]). In the
case of a localized 3D charge distribution in vacuum, one can obtain an approximation to
the potential on the boundaries of the mesh (φαβγ) using a multipolar expansion (see, for
example, [12]). Up to now, we have used for our physical application an expansion truncated
at the quadrupolar term. Depending on specific needs of users, this expansion may include
higher-order multipole terms. In any case, the procedure will be a straightforward exten-
sion of the one described here. Assuming that the boundaries of the mesh are far enough
from the charge distribution, the following formula leads to a good approximation for the
potential,

φ(r) = Q

r
+ p · r

r 3
+

3∑
i j=1

xi x j Qi j

r 5
+ O(1/r 4), (25)

with the definitions

Q =
∫
ρ(r) d3r : total charge

p =
∫
ρ(r)r d3r : dipole moment (26)

Qi j =
∫
ρ(r)(3xi x j − r 2δi j) d3r : quadrupolar terms.

Note that in Eqs. (25) and (26),xi meansx, y, z for i = 1, 2, 3, respectively. These quantities
are obtained by using a procedure similar to (24) once the interpolation ofρ on the spline
basis has been done,

ρ(x, y, z) =
N∑

i, j,k=0

bi jk SXi (x)SY j(y)SZk(z).

Then one has to calculate all the multipolar terms such as

Q =
N∑

i jk

ωiω jωkbi jk

pX =
N∑

i jk

ω′iω jωkbi jk

QX X =
N∑

i jk

(2ω′′i ω jωz+ ωiω
′′
jωk + ωiω jω

′′
k)bi jk

430 PLAGNE AND BERTHOU

with the definitions

ωi =
∫ xN

x0

Si (x) dx; ω′i =
∫ xN

x0

x Si (x) dx; ω′′i =
∫ xN

x0

x2Si (x) dx. (27)

Once again, expression for these integrals can be found analytically. In practice, it is useful
to calculate first the total chargeQ and the dipole momentp and then to evaluate Eq. (25)
in the frame of the center of chargeG= p/Q (for Q 6= 0). In this new frame, the dipolar
term is obviously zero and ten Eq. (25) can be rewritten

φ(r ′) = Q

r ′
+

3∑
i j=1

x′i x
′
j Q
′
i j

r ′5
. (28)

Note that the quadrupolar term depends on the used frame,Q′i j 6= Qi j . However,Q′i j is a
simple function ofQ, p, andQi j .

2.5. Generalizations

2.5.1. Helmholtz equation.TBSCM is not restricted to Poisson’s equation. In fact, if
a differential equation involves a differential operator that can be written as a tensorial
product of one-dimensional operators invertible using a procedure similar to (21), then the
method can be applied. Helmholtz’s equation in Cartesian coordinates is the most simple
generalization that can be made,

[∇2− λ2]V(r) = ρ(r).

The corresponding three-dimensional operatorÃXY Z is

ÃXY Z = ∇̃2
XY Z− λ2 Ĩ X ⊗ Ĩ Y ⊗ Ĩ Z .

One can easily verify that

Ã−1
XY Z = (M̃ X ⊗ M̃Y ⊗ M̃ Z)Q̃

−1
XY Z

(
M̃−1

X ⊗ M̃−1
Y ⊗ M̃−1

Z

)
,

with

Q̃XY Z = 5̃X ⊗ Ĩ Y ⊗ Ĩ Z + Ĩ X ⊗ 5̃Y ⊗ Ĩ Z + Ĩ X ⊗ Ĩ Y ⊗ 5̃Z − λ2 Ĩ X ⊗ Ĩ Y ⊗ Ĩ Z,

and

[
Q̃−1

XY Z

]
αβγ,α′β ′γ ′ =

δαα′δββ ′δγ γ ′

l xα + l yβ + l zγ − λ2
.

Reference [13] describes the tensorial decompositions of other kinds of differential equa-
tions.

TBSCM POISSON SOLVER 431

2.5.2. Quintic splines. Another generalization of TBSCM is the use of higher order
polynomial functions such as quintic splines. The main difference in this case is the
definitions of these fifth order piecewise polynomial functions. As in the cubic case, a
Ng+ 1 points grid{xa} is defined. On this grid, 3Ng+ 3 quintic splines are defined:
{Qi (x)}/ i = 0 . . .3Ng+ 2. Explicit formulas of these polynomial functions can be deduced
from the condensed expression

∀σ, σ ′ ∈ {0, 1, 2}
{

∂σ Q3a+σ ′ (xb)

∂xσ = δσ,σ ′δa,b

Q3a+σ (x) = 0 ∀x ∈ [x0, xa−1] ∪ [xa+1, xNg

]
.

A function f expanded on this basis is two times differentiable with a continuous second
derivative on the grid,

f (x) =
3Ng+2∑

i=0

ci Qi (x).

In order to find the solution of Eq. (2) as an expansion on a quintic spline basis, one has
to determine the 3Ng+ 3 unknown variablesci . In addition to the 2 boundary conditions,
3Ng+ 1 collocation points must be defined. In our example we have chosen the following
partition: 3 collocation points per grid step (Gauss points) plus one located at the center of
the grid (only for evenNg). For a more general approach (n order splines) see [18].

2.6. BSCM Convergence Order

Let us define the sum of two Gaussian functions as a model charge distribution,

g(r) = (2π)− 3
2 e−

r 2

2

ρ(r) = g(r − r1)+ g(r − r2)
(29)

r1 = (2.5, 2.5, 2.5)
r2 = −r1.

A uniform grid is used. The grid’s boundaries are

x0 = y0 = z0 = −24

xN = yN = zN = 24.

Boundary conditions have been fulfilled analytically. Thus, errors are due only to the
finite size of the grid step. The analytic expression of the solution of Poisson’s equation is

V(r) = Erf(|r − r1|/
√

2)

|r − r1| + Erf(|r − r2|/
√

2)

|r − r2| .

Figure 2 shows the maximum error as a function of the number of collocation points. Sample
errors are calculated on a uniform 2D mesh (100× 100) in the planez= 0. The points{r i }
of this sample are neither collocation nor grid points. Errors are defined by

εmax(V) = max
{r i }
{|φ(r i)− V(r i)|}.

432 PLAGNE AND BERTHOU

FIG. 2. Maximum error for the approximate potential and its derivatives as a function of the number of
collocation points for each space coordinate.

The errors for the derivatives are defined in the same way. In addition to these results, fitted
curves have been drawn. Expressions of these polynomial fitting curves arebi hα for the
cubic case andci hβ for the quintic case. Theb’s andc’s are the fit parameters, theα andβ
powers give the orders of the method, whileh is the mean-value of the grid step,

h = xNg − x0

N
.

The main results of this figure are summarized in Table I. Cubic related results are in

TBSCM POISSON SOLVER 433

TABLE I

Convergence Order for the Poisson’s Equation

Solution and Its Derivatives

V ∂V
∂x

∂2V
∂x∂y

∂2V
∂x2

Cubic splines O(h4) O(h3) O(h3) O(h2)

Quintic splines O(h6) O(h5) O(h5) O(h4)

perfect agreement with [11] in which a systematic analysis of the convergence of cubic
spline collocation methods in the 2D case is performed. It should be noticed that the second
derivative in the quintic case converges as fast as the functionV in the cubic case.

As the calculation time is only a function of the number of collocation points, quintic
splines seem to be superior and one could wonder why low order splines (cubic splines) can
be useful. One obvious reason is that, for low accuracies, the difference between cubic and
quintic efficiency is not clear. Another reason can be found by considering the applications
of the method. Let us assume that one has to calculate the value of the potential and of the
electric field many times everywhere inside the mesh. Actually this would be the case if
one had to determine the trajectories of a great number of charged particles moving in the
mesh. In such a case, the time needed to evaluate the potential at a given position is a major
issue. As we have already seen in Subsection 2.4, such a value can be obtained by a sum
over 64 terms in the cubic case. There are 63= 216 non-zero terms in the corresponding
quintic case and this consideration can, in some situations, disqualify high-order splines.

2.7. Comparison with FFT-Based Method

The computational cost of TBSCM has been shown to be 12N4 (N is the number of
collocation points) in Subsection 2.6, while FFT-based methods (see, for example, [10, 5])
have a computational cost proportional toN3 ln(N) but rely on the use of uniform grids.
Also, N is restricted to be factorizable into a product of small integers, preferentially a
power of 2. Because of the multipolar expansion used to find the boundary conditions, the
TBSCM can require less floating point operations than FFT-based methods. The following
example shall illustrate this point. Let us define the charge densityρ by Eq. (29). The
boundary conditions are obtained using Eq. (28). In order to have a good accuracy using
this expansion, the following grid boundaries have been chosen,

x0 = y0 = z0 = −20

xN = yn = zN = +20.

Let us first define a uniform gridG1 using these boundaries with 128 collocation points.
These boundaries have been chosen in such a way that the errors due to the finite size of the
grid step are comparable with those due to the multipolar expansion. A non-uniform grid
G2 is built in order to obtain a finest grid step thanG1 in the charged region and a coarser
mesh outside this region. The charge density is almost zero outside a cube defined by

x1,in = y1,in = z1,in = −5.2

x2,in = y2,in = z2,in = +5.2.

434 PLAGNE AND BERTHOU

TABLE II

Compared Accuracies Related to a Uniform (G1)

and a Non-uniform (G2) Grid

ε(V) ε
(
∂V
∂x

)
ε
(
∂2V
∂x∂y

)
ε
(
∂2V
∂x2

)
G1 9.0E−5 1.2E−4 5.2E−5 1.0E−3
G2 8.7E−5 3.1E−4 1.3E−4 1.6E−3

Inside this cubeG2 is uniform with 26 collocation points. Outside this cube the grid steps
grow geometrically from the inner cube to the grid boundaries,

xa+1− xa

xa − xa−1
= r ∀xa > x2,in

xa − xa−1

xa+1− xa
= r ∀xa < x1,in.

The first grid step from the outer part of the grid is chosen to be equal to the inner grid step.
Thusr depends only onN2, the number of collocation points in the outer part of the grid.
We choose the smallest value forN2 leading to an accuracy as good as the one obtained
with the uniform grid. This accuracy is reached when 10 collocation points are placed to
the left and right hand sides of the inner grid part (i.e.,N2= 20). Table II gives accuracies
for these two grids.

The prefactors for FFT-based methods depend on specific implementation and algorithms.
Moreover, in all cases, those prefactors are larger than the TBSCM ones (i.e., 12). Therefore,
we have chosen to remove them from our computational cost estimate. As the order of
splines could be different, we assume the same convergence for the finite difference scheme
involved in the FFT-based method as the TBSCM one. Obviously, the size required to
store the solution is in both cases proportional toN3. Using these two assumptions the
computational costs can be calculated. Table III gives these computational costs.

This example shows clearly (this would have been clearer with prefactors) that the suit-
ability of the grid to the problem is an issue as important as the computational cost. In the
case of localized 3D charge distribution in vacuum TBSCM is an efficient method compared
to the FFT-based method.

It should be noticed that FFT algorithms can be useful within the TBSCM approach.
In [2], the authors use the fact that with cubic splines and uniform grids the eigenvectors
and eigenvaluesM and5 in Eqs. (19) and (20) are known analytically to apply an FFT
algorithm and then reach aO(N3 ln N) cost for the TBSCM. An extension of the scope
of the FFT-based method to non-uniform grid has been proposed in [8, 9]. Unfortunately

TABLE III

Computational Costs and Storages Related toG1 and G2

Cost (number of operations) Storage size

G1 (FFT) 1283 ln 128= 10.2E6 1283 = 2.1E6
G2 (TBSCM) 464 = 4.5E6 463 = 9.7E4

TBSCM POISSON SOLVER 435

this method based on Riemannian geometry makes a direct solving of Poisson’s equation
difficult and therefore an iterative method is proposed.

The method presented here is direct and straightforward to implement since it involves
mainly matrix-vector products. The next section describes the parallelization of the method
which greatly benefits from this simple structure. Finally, it is important to note that more
complicated methods like multi-grid which scales almost linearly with the number of grid
points(O(N3)) are superior to the present approach for large enough grid sizes.

3. PARALLELIZATION OF TBSCM

The TBSCM code seemed to be a good candidate for data parallel programming, and
more precisely for high performance Fortran (HPF) programming [6], because it is a regular
problem with static control which handles basic data structures (i.e., arrays) with principally
linear access to memory. Thus, we decided to port the TBSCM code in high performance
Fortran. In the following the sequential program that implements TBSCM is calledPoisson.

As explained in Section 2, the part ofPoissonthat is the most computationally intensive
is the tensor vector product. We first extracted the tensor vector product from the whole
code in order to facilitate the test of different parallelization strategies. This appeared to
be a good decision since we developed numerous parallel versions of the tensor vector
product. In the following, the fragment of code that implements the tensor vector product
is calledTensrus. We will briefly describe in Subsection 3.2 the main steps ofTensrus
parallelization. The complete description of the tensrus parallelization is given in [1]. The
porting of the whole code in HPF and its performance are presented in Subsection 3.3.

3.1. Target Machines and Compilers

During theTensrusparallelization, we used three different MPP Cray machines, a T3D, a
T3E-600, and a T3E-750, and mainly the pghpf HPF compiler from Portland Group [17, 4].
Table IV summarizes the characteristics of the target machines. Our experience of parallel
programming on the Cray T3D and T3E showed that we generally obtained 10% of their
peak performance.

3.2. Parallelizing the Tensor Vector Product

We will describe in this section the main steps ofTensrusparallelization.Tensrusper-
forms exactly 6× N4 floating-point operations. The Mflops (millions of operations per-
formed in one second) is a good criteria to compare the different parallel versions ofTen-
srus. For a given parallel version ofTensrus, Mflops per processor measured with different

TABLE IV

Target Machines Characteristics (1)

Clock speed Peak perf. Bandwidth
System No. proc. DECchip MHz Mflops MB/PE Peak (MB/s)

Cray T3D 128 21064 150 150 64 300
Cray T3E-600 128 21164 300 600 128 600
Cray T3E-750 256 21164 375 750 128 600

436 PLAGNE AND BERTHOU

number of processors evaluates its scalability. Basically,Tensrus is composed of three
four-dimensional loop nests. The arrays manipulated are two- and three-dimensional. Each
loop nest contains three parallel loops and one reduction on the last one. In order to increase
the grain parallelism, one has usually to make a parallel loop as computationally intensive
as possible and thus to reduce the number of parallel loops. In other words, inside a loop
nest the parallel loop is the outer one. This is done simply in HPF by adding a compilation
directive!HPF$ INDEPENDENT specifying that the loop must be distributed across the
processors of the parallel target machine. Then, the data have to be distributed in such a way
that the processors own as much as possible of the data needed to perform the computation.
In theTensrusprogram, the three-dimensional arrays manipulated are (BLOCK, ∗, ∗) or
∗, ∗, BLOCK) distributed.1 The two-dimensional arrays are replicated. In HPF, such array
distributions are done by inserting compilation directives in the source code. As an example,
the directive!HPF$ DISTRIBUTE (BLOCK, ∗, ∗) :: fp means that we want the arrayfp
to be distributed according to its first dimension. Thus, each processor will own consecutive
lines offp. All the data transfers between processors occurring during the parallel execution
of Tensrusare due to an array redistribution between the two last loop nests ofTensrus.

The performance of this first parallel version oftensruscompiled by pghpf 2.1 on a T3D
and T3E-600 are the following. The experiments have been performed on 1283 arrays. On a
T3D, the parallel code leads to linear speed-up on 2 to 128 processors with13Mflops/PEs
and 1.7 GFLOPs on 128 PEs. On a T3E-600, the parallel code leads to linear speed-up
on 1 to 64 processors with28 Mflops/PEs and 2.1 GFLOPs on 128 PEs. These results are
already acceptale. But we were not satisfied since the performance of the sequential version
was four times better than the performance per processor of the HPF version. Indeed, the
sequential version oftensruscompiled by the Cray Fortran 90 compiler achieved74Mflops
on T3D and 136 Mflops on T3E-600.

The reasons for the loss in efficiency have been clearly established. The pghpf complier
executes roughly two steps. In the first step pghpf transforms the user’s HPF code into a
message passing program. Then, during a second step this intermediate message passing
program is submitted to the native F90 compiler of the target machine. When the sequential
version ofTensrus is submitted to the native F90 complier, the complier recognizes that
Tensrusperforms a matrix-vector product. Thus, it replaces the corresponding fragment of
code by an optimized routines of the T3x (SGEMV for the T3E). When the whole code
is submitted to the pghpf compiler, it modifies so much the original code that the native
F90 compiler does not recognize any longer the matrix-vector product. Thus, we decided
to gather the computations contained in the three loop nests ofTensrus(which are “local”
computaions) inPURE subroutines complied separately with the Cray Fortran 90 native
compiler in such a way that it replaces the code fragment that performs a matrix-vector
product by a call to the optimized subroutine.

The performance on the T3D is very good.Tenrus achieved 8.4 GFLOPS on 128 pro-
cessors, that is, 66 Mflops per processor. Moreover, the scalability is very good up to 64
processors, where linear speed-up is achieved. The performance on T3E-600 decreases
rapidly because there are not enough computations to feed the T3E-600 processors. This is
confirmed by the numbers we obtained on larger arrays. As shown in Table V, we obtained

1 Multi-dimensional distributions are not good data distribution candidates for theTensrus program because
they increase the amount of communication and decrease the grain parallelism compared to mono-dimensional
data distributions.

TBSCM POISSON SOLVER 437

TABLE V

PGHPF 2.1: 2563 Arrays

T3E-600 measures

No. of proc. 8 16 32 64 128
Mflops 1093 2165 4237 8098 14083
Mflops/PE 136 135 132 126 110

very good scalability with an array size of 2563 and the performance per processor of the
parallel code is very close to that of the sequential version.

It was clear that the last potential source of inefficiency was the necessary redistribution
of one of the three-dimensional arrays between the two last loop nests ofTensrus. Thus,
instead of letting the HPF compiler perform it, we wrote a message passing routine that
performs this redistribution. We wrote two versions of the routine. One invoking the message
passing interface library [16] and one using the Cray ShMem library [15]. This library is
implemented on Cray T3x and SGI Origin systems and provides communications with
high bandwidth and low latency. The loss of portability is the main drawback, but with the
forthcoming MPI2 standard it will be possible to use the one-sided communications model
of ShMem in a portable and efficient way. The “ShMem” version is better than the “MPI”
version, scales very well, and achieves very good performance: Table VI summarizes the
performances of the final step versions ofTensrus.

On 5123 arrays this version ofTensrus(using ShMem) achieves43GFLOPs on128PEs
(i.e.,341Mflops/PEs) and85GFLOPs on256PEs (i.e.,332Mflops/PEs). This represents
about50% of the T3E-750 peak performance. These results are very satisfactory. Thus, we
decided to stop the parallelization ofTensrushere.

3.3. Putting It All Together

Compared to the parallelization ofTensrus, the implementation of the whole code was
fast and easy. The parallel code remains very close to the sequential one. Our first task was
to add HPF directives for the distribution of all the three-dimensional arrays. Obviously
these array distributions correspond to the one specified byTensrus. Then, the 3D and

TABLE VI

HPF-MPI and HPF-ShMem Versions, T3E-750, PGHPF2.3

No. of proc. 2 4 8 16 32 64 128

1283 arrays

“MPI” version, Mflops 492 974 1896 3532 6375 8568 11454
“ShMem” version, Mflops 547 1072 2083 4026 7437 13261 17607
“ShMem” version, Mflops/PE 273 268 260 252 232 207 138

2563 arrays

“MPI” version, Mflops 2306 4559 8931 16376 29422
“ShMem” version, Mflops 2541 4977 9792 19045 36064
“ShMem” version, Mflops/PE 318 311 306 298 282

438 PLAGNE AND BERTHOU

TABLE VII

Whole Code, T3E-750, PGHPF2.3

No. of proc. 4 8 16 32 64 128

T3E-750, PGHPF2.3, 1283 arrays

TIME (s) 8.08 4.18 2.21 1.17 0.66
Mflops 824 1576 2912 5344 9088
Mflops/PE 206 197 182 167 142
% of Tensrus 82% 82% 79% 75% 69%

T3E-750, PGHPF2.3, 2563 arrays

TIME (s) 7.08 3.82
Mflops 15232 27520
Mflops/PE 232 215
% of Tensrus 82% 77%

4D loop nests (about 20) have been successfully parallelized by adding independent HPF
directives. Actually, the only new task consisted of taking into account the fact that, in the
parallel version, two kinds of 3D-arrays appear, namely the (B, ∗, ∗) and the (∗, ∗, B). In
order to save space, 3D-arrays are used to store different things during the calculations, and
therefore we had to optimize their use to avoid redistributions.

The parallel version ofPoissonruns only with more than 4 (resp. 64) processors on
1283 (resp. 2563) arrays because of the memoryPoissonconsumes. We give in Table VII
the execution times measured experimentally and the Mflops obtained.2 Percentages of
execution time spent inTensrusare also given. These measurements are also plotted Fig. 3.

3.4. Parallelization of TBSCM: Concluding Remarks

The parallel version ofPoissonachieves nearly linear speed-up until 128 (resp. 32)
processors with 2563 (resp. 1283) arrays.3 It achievesgood performancesince nearly 215
Mflops per processor are obtained on a Cray T3E-750 with 2563 arrays on 128 processors
which leads to a total of 27.6 Gflops (27.6 109 floating points operations per second).

It is nearly the same code plus only 64 lines of HPF directives and 130 lines of MPI
routine calls. The additional lines of code and directives in the parallel version only repre-
sent 2% of the total size ofPoisson. This makes the parallel version ofPoissonasreadable
as the sequential one. The few parts of code that contain MPI routine calls are enclosed
by compilation directives. This allows us to only have one code to maintain instead of
two: the sequential and the parallel versions.Maintainability of the code is increased.
Maintaining only one code that contains both the sequential version and the parallel ver-
sion is a much harder job with message passing programming. The sequential program
has to be transformed in order to take into account the way the work is distributed and

2 The number of floating point operations performed byPoissonis not known exactly, as it is for theTensrus
computational kernel. Mflops have been measured withPAT, a performance analyzer tool available on T3E.PAT
has been shown to give accurate measures on various programs (e.g.,Tensrus). Mflops are given here as landmarks
but not as performance measure criteria.

3 For n∈ [4, 32] with 1283 arrays, the ratio between the execution time onn processors and the execution time
on 2∗ n processors is equal to1.9.

TBSCM POISSON SOLVER 439

FIG. 3. Whole code time measurements, T3E-750, 1283 arrays.

the way the data are distributed and communicated between the processes of the parallel
execution.

The parallel code achievesportability since one efficient version has been written that
contains only HPF directives and MPI routines calls.

Correctness of the numerical results, ease of parallel programming, good readability and
maintainability of the parallel program, absolute performance, scalability, and portability
have been attained.

The parallel implementation of TBSCM that we carried out solves Poisson’s equation
with 2563 (resp. 1283) grids in 3.82 s (resp. 0.66 s) on 128 processors (resp. 64 processors).
In practice TBSCM, included in our physical simulation code (Vlasov), is used with a 1283

grid and 32 processors. Using such a grid was impossible on the sequential workstation
(DEC alpha EV56 400 MHz) we used before parallelization, not because of storage but
because of CPU time. On this workstation the time required to solve the 1283 case is 30.5 s.
This is 25 times more than using 32 processors on the T3E-750.

4. CONCLUSION

We have given a self-contained description of the TBSCM Poisson solver. The practical
calculation of the boundary conditions in the framework of spline basis has been detailed.
This solver has been shown to be competitive with FFT-based methods in the case of
a localized 3D charge distribution in vacuum because of the non-uniform meshes it can
handle. This direct approach has also been shown to be faster than iterative methods. We
have emphasized theO(h4) andO(h6) convergence of the basis spline collocation method
in the cubic and quintic case, respectively. We described finally the parallel implementation
of the method and emphasized its high performance and good scalability on a distributed
memory T3E Cray machine.

440 PLAGNE AND BERTHOU

REFERENCES

1. J. Y. Berthou and L. Plagne, Parallel HPF-MPI implementation of the TBSCM Poisson solver, inProceed-
ings of HPCN’98, Amsterdam, The Netherland, Lecture Notes in Computer Science (Springer-Verlag, New
York/Berlin, 1998), Vol. 1401.

2. B. Bialecki, G. Fairweather, and K. R. Bennett, Fast direct solvers for piecewise hermite bicubic orthogonal
spline collocation equations,SIAM J. Numer. Anal.29, 156 (1992).

3. C. De Boor,Practical Guide to Splines(Springer-Verlag, Berlin/New York, 1978).

4. Z. Bozkus, L. Meadows, S. Nakamoto, V. Schuster, and M. Young, Pghpf—An optimizing high performance
fortran compiler for distributed memory machines,Sci. Programming6(1), 29 (1997).

5. E. Braverman, M. Israeli, A. Averbuch, and L. Vozovoi, A fast 3d poisson solver of arbitrary order accuracy,
J. Comput. Phys.144, 109 (1998).

6. High Performance Fortran Forum: High Performance Fortran Language Specification, Version 2.0, Technical
Report, Center for Research on Parallel Computation, Rice University, Houston, TX, January 1997.

7. C. Guet and L. Plagne, Electron dynamics in metal clusters, inTheory of Atomic and Molecular Clusters,
edited by J. Jellinek (Springer-Verlag, New York/Berlin, 1999).

8. F. Gygi, Adaptive riemannian metric for plane-wave electronic-structure calculations,Europhys. Lett.19(7),
617 (1992).

9. F. Gygi, Electronic-structure calculations in adaptive coordinates,Phys. Rev. B48(16), 11,692 (1993).

10. R. Hockney, A fast direct solution of poisson’s equation using fourier analysis,J. Assoc. Comput. Mach.9,
135 (1965).

11. E. N. Houstis, E. A. Vavalis, and J. R. Rice, Convrgence ofo(h4) cubic spline collocation methods for elliptic
partial differential equation,SIAM J. Numer. Anal.25, 54 (1988).

12. J. D. Jackson,Classical Electrodynamics(Wiley, New York, 1975).

13. R. E. Lynch, J. R. Rice, and D. H. Thomas, Direct solution of partial difference equations by tensor product
methods,Numer. Math.6, 185 (1964).

14. L. Plagne and C. Guet, Highly-ionized but weakly excited metal clusters in collisions with multicharged ions,
Phys. Rev. A59(6), 4461 (1999).

15. Cray Research,Message Passing Toolkit: Release Overview, ro-5290, 1.1, Technical Report, July.

16. The MPI Forum, document for a standard message-passing interface, April 1994.

17. The Portland Group, pghpf User’s Guide, Version 2.1. Technical Report, May 1996.

18. A. S. Umar, J. Wu, M. R. Strayer, and C. Bottcher, Basis-spline collocation method for the lattice solution of
boundary value problems,J. Comput. Phys.93, 426 (1991).

	1. INTRODUCTION
	2. TENSORIAL BASIS SPLINE COLLOCATION METHOD
	FIG. 1.
	FIG. 2.
	TABLE I
	TABLE II
	TABLE III

	3. PARALLELIZATION OF TBSCM
	TABLE IV
	TABLE V
	TABLE VI
	TABLE VII
	FIG. 3.

	4. CONCLUSION
	REFERENCES

